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Plastic deformation of a tension specimen bounded by a curved surface of revolution is considered. Such a
configuration may occur, for example, as a result of necking. The specimen material satisfies the Tresca
yield condition and the associated flow rule. Approximate solutions for the stress distribution in the neck
were examined in [6]. The extension of notched bars was investigated by numerical and graphic methods
in [2, 4]. Below, the problem is solved analytically for a sufficiently smooth neck; a small degree of non-
uniformity of the plastic properties is taken info account. '

1. We assume that the plastic state in question corresponds to the Haar-Karmanregime [1]; as usual, the validity
of this assumption is confirmed by the possibility of obtaining a complete solution. In tension the radial component of
the flow rate u < 0 and, in accordance with the regime adopted, the circumferential principal stress are given by

Oy == Yo oy + 06,) — k

while the components oy, 0. Ty must satisfy the equilibrium and yield conditions

ds at S, —G k Jt ds T
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ar + oz + 2r + r =0, or + dz + r =0
(5, — 6,0 + 4r, > =4k (1.1)

Herve, k is the yield point of the material in shear. Plastic flow occurs in the region AOB (Fig. 1) adjacent to the
minimum cross section of the test piece. The absence of stresses at the free surface makes it possible to write the
boundary conditions for system (1.1):

0. =k—kcos2\, 0=k kcos2h, T, = ksin 2L (1.2)
where A is the angle between the tangent to AB and the oz-axis.
The shape of the neck outside AB does not affect the solution; however, it must be such that the yield condition is

nowhere exceeded. On AB we assume that the neck is formed by a smooth curve whose equation can be written in the
form

L=iree(Z), s@=w0=0 1.3)
and the distribution of the mechanical properties in the plastic region

k=1k () +ek (r, 2). (1.4)

Here, a is the radius of the minimum cross section and 8 and € are small dimensionless parameters of the same
order.

Plastic nonuniformity of the (1.4) type may occur, for example, as a result of hardening during extension.

In Egqs. (1.1)~(1.4) it is possible to transform to dimensionless quantities and in what follows all the geometric
dimensions will be referred to the characteristic dimension g, and the stresses to k(r).

We write the linearized solution of system (1.1) in the parameters 6 and ¢ :

0 = 03" + (6 + &) 0. (1.5)

The case & = £ = 0 corresponds to the extension of a circular cylinder, when the yield stress is a function only
of the coordinate r, and for the zero-order solution we have

00 =2, 0,0 = T,,° = 0, (1.8)
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Substituting (1.5), (1.6) into (1.1) and linearizing, we obtain

3, dt,’ ot Os.) oK T’
r rz rz r o4 rz
ar 9z 0, ar 3 +m 37 T ro 0
5,/ =6 +mKk (1.7)
and, linearizing (1.2}, (1.3),

5, =0, o/ =mkK, r”'=(2——m)d—?;§—z) at r=t, (m—_-zﬁ-_:—a). (1.8)
The solution of Eqs. (1.7) with boundary conditions (1.8) (Cauchy problem) will be found in series form:

5= Ny(2) + ) Ni(z)(1 —r)}

==y
o =S80 + D) S (1 —r)

fem=]

T, =T, (@) + 2 T, (& (1 —r), (1.9)
i=1

for which purpose we also expand the function K(r, z) in powers of (1~r1):

K (. ) =Ko+ QK (A ~r)i. (1.10)
(251

The convergence of series (1.9) and (1.10) is ensured by the choice of ¢(z) and K(r, z) as analytic functions of
their arguments [3].

Satisfying boundary conditions (1.8}, we have

No‘:O, So:rﬂKo, To=(2—m)i%)—« (1,11)

Substituting (1.9) and (1.10) into Egs. (1.7) and equating to zero, terms containing the same powers of (1—r), we find re~
currence relations for the successive computation of the remaining coefficients of series (1.9),

| S .
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Iy= Ny + Lo+ mKy
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If the nonuniformity depends only on r, then, setting m = 0 in (1.12), we obtain
Ni=Ty, Ti1=7Ts Np=3,To, To=To-+YTo"
Na=1oTo +VYs To", Ts==To-YsTo" (1.13)
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No=1Ty Ty, Ta=To-"ouTe" +3alo ;...
S;=N; i=1,2,3,.... (1.14)

In (1.12) and (1.13) the primes denote derivatives with respect to z.

Near the axis of symmetry the terms in Egs. (1.1) containing r™! vanish [4], and the stress field can be continued,
following [3].

2. Consider the velocity field. The components of u and w in the directions or, oz must satisfy the incompress-
ibility condition

R 2.1
and the isotropy condition
du dw
5+ 5 =0- (2.2)

The boundary conditions are given on the slip lines QA and OB, along which the condition of continuity of the nor-
mal component must be satisfied. In accordance with (1.5) we set

u=u 4B t+eyu, wv=0v"+ (@ -¢v.

If the rigid parts of the test piece are displaced at rates w = V, w = —V, then for the zero-order solution the
velocity field will be [1]

et T Feiae(E) 29

Linear equations (2.1) and (2.2) are retained for the quantities u' and w', and linearization of the boundary condi~
tions along OA and OB gives

W tw =0 8at r=z r=—3z,

It is easy to see that these conditions are satisfied by the solution

uw=w =0,

Thus, correct to quantities of the second order, the shape of the neck (1.3) does not affect the velocity field (2.3)

of the zero-order solution. This is also true of the case of plane deformation [5]; it continues to apply in the presence
of nonuniformity of the (1.4) type.

3. In analyzing the state of stress in the neck of a tensile test piece, functions (1.3) and (1.4) must usually be de-
termined experimentally. Solution (1.9) is especially simple if ¢(z) is an integral polynomial of degree n; in this case
the derivatives of T, starting from the n-th, vanish and series (1.9) can be summed.

For simplicity, we consider the extension of a homogeneous rod with a paraboloidal neck (Fig. 1):

r=1 L 52, (3.1)
The coefficients (1.13) will be
No=0, le—:«To':%, i=1,2,3
To=T; =4z
and summation gives
0 =0, =—4lnr, T, = 4ir, (3.2)

Near the axis of symmetry (r = v, v — 0) the solution becomes

Pt d .
sz‘Msz_.A b —, rr2_4

»a‘] N

(3.3)

=~

Constant A is determined from (3.2) and (3.3):

A=4(1—Tnvy).
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The boundary of the region of solution (3.3) is now known; however, the finiteness of the stresses on the axis re-
quires that v be of the same order as 6. Correct to quantities of order 5%, the mean yield stress (0z) can be found by
integrating (1.6) and (3.2):

1
1
<sz>=?Sznr(z—mlnr)dr:m—:a)=2(4+51p—> (3.4)
0

where p is the radius of curvature of the meridional section of the paraboloidal neck at z = 0.

We note that Eq. (3.4) differs from the corresponding solution of Davidenko and Spiridonova [6] with respect to the

coefficient of the term 1/p.
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Fig. 2

We investigate the development of the neck and the associated stress distribution in the state preceding tensile
fracture using the following model. After the yield point is reached, plastic flow develops in the neighborhood of the
weakest section; as a result of hardening the location of this section changes continuously and plastic deformation suc-
cessively embraces different parts of the test piece, hardening it uniformly (in the statistical sense) and preserving the
initial cylindrical shape. However, during deformation the metal loses its ability to harden and afier a certain time the
flow region is localized, causing the formation of a neck. An experimental confirmation of this model may be found in
[71. As shown, in the first approximation, for an arbitrary neck described by an equation of the (1.3) type the velocity
field (2.3) is preserved. From Eqgs. (2.3) we computed the successive changes in the neck shown in Fig. 2 (curves 1,

. .., 7). In each stage of the computations the shape of the neck was approximated by Eq. (3.1) and the smallness of the
parameter 6 was checked. The computations were continued until the starting diameter was reduced by a factor of 4.8;
however, the value of ¢ did not exceed 0.15.

In Fig. 2 we have plotted the vertical stress diagrams (curves 2', 4', 6') in the minimum cross section of the test
piece calculated from Egs. (3.2) and (3.3) for the instants in question.
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